If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (8x3y2 + 5x2y2 + 5xy2) + (4x3y2 + -3x2y2 + -3xy2) = 0 Reorder the terms: (5xy2 + 5x2y2 + 8x3y2) + (4x3y2 + -3x2y2 + -3xy2) = 0 Remove parenthesis around (5xy2 + 5x2y2 + 8x3y2) 5xy2 + 5x2y2 + 8x3y2 + (4x3y2 + -3x2y2 + -3xy2) = 0 Reorder the terms: 5xy2 + 5x2y2 + 8x3y2 + (-3xy2 + -3x2y2 + 4x3y2) = 0 Remove parenthesis around (-3xy2 + -3x2y2 + 4x3y2) 5xy2 + 5x2y2 + 8x3y2 + -3xy2 + -3x2y2 + 4x3y2 = 0 Reorder the terms: 5xy2 + -3xy2 + 5x2y2 + -3x2y2 + 8x3y2 + 4x3y2 = 0 Combine like terms: 5xy2 + -3xy2 = 2xy2 2xy2 + 5x2y2 + -3x2y2 + 8x3y2 + 4x3y2 = 0 Combine like terms: 5x2y2 + -3x2y2 = 2x2y2 2xy2 + 2x2y2 + 8x3y2 + 4x3y2 = 0 Combine like terms: 8x3y2 + 4x3y2 = 12x3y2 2xy2 + 2x2y2 + 12x3y2 = 0 Solving 2xy2 + 2x2y2 + 12x3y2 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '2xy2'. 2xy2(1 + x + 6x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor 'xy2' equal to zero and attempt to solve: Simplifying xy2 = 0 Solving xy2 = 0 Move all terms containing x to the left, all other terms to the right. Simplifying xy2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Subproblem 2
Set the factor '(1 + x + 6x2)' equal to zero and attempt to solve: Simplifying 1 + x + 6x2 = 0 Solving 1 + x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + 0.1666666667x + x2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + 0.1666666667x + -0.1666666667 + x2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + 0.1666666667x + x2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + 0.1666666667x + x2 = 0 + -0.1666666667 0.1666666667x + x2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 0.1666666667x + x2 = -0.1666666667 The x term is x. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. 0.1666666667x + 0.25 + x2 = -0.1666666667 + 0.25 Reorder the terms: 0.25 + 0.1666666667x + x2 = -0.1666666667 + 0.25 Combine like terms: -0.1666666667 + 0.25 = 0.0833333333 0.25 + 0.1666666667x + x2 = 0.0833333333 Factor a perfect square on the left side: (x + 0.5)(x + 0.5) = 0.0833333333 Calculate the square root of the right side: 0.288675135 Break this problem into two subproblems by setting (x + 0.5) equal to 0.288675135 and -0.288675135.Subproblem 1
x + 0.5 = 0.288675135 Simplifying x + 0.5 = 0.288675135 Reorder the terms: 0.5 + x = 0.288675135 Solving 0.5 + x = 0.288675135 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = 0.288675135 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = 0.288675135 + -0.5 x = 0.288675135 + -0.5 Combine like terms: 0.288675135 + -0.5 = -0.211324865 x = -0.211324865 Simplifying x = -0.211324865Subproblem 2
x + 0.5 = -0.288675135 Simplifying x + 0.5 = -0.288675135 Reorder the terms: 0.5 + x = -0.288675135 Solving 0.5 + x = -0.288675135 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = -0.288675135 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = -0.288675135 + -0.5 x = -0.288675135 + -0.5 Combine like terms: -0.288675135 + -0.5 = -0.788675135 x = -0.788675135 Simplifying x = -0.788675135Solution
The solution to the problem is based on the solutions from the subproblems. x = {-0.211324865, -0.788675135}Solution
x = {-0.211324865, -0.788675135}
| (8t^8-6t+7t^2+2)+(2t^7+3t^4-5t)= | | (8t-6t+7t^2+2)+(2t^7+3t^4-5t)= | | 11ab+3b^2-4ab+3b^2-10= | | x^5-6x^4+9x^5-4x^4+2= | | 6x^2+3=0 | | 6x^2-3=0 | | 5x^5+4x+14=0 | | 4p^2+68p+168=0 | | 6k^2+84k+270=0 | | 6k^2+84k=270 | | 6a^2+48a-54=0 | | 6x^2-19x=0 | | 6x^2-19+14=0 | | 0=a^2-19a-20 | | m^2-m-12=0 | | m^2-4m+3m-12=0 | | m^2-3m-10=0 | | -5a^2-5a=0 | | Y^2=20y | | y^2+20y=0 | | 2y+6y^2=0 | | (2x^9-8x^3+2x^2+8)+(2x^8+2x^3-8x)= | | -3+-1y+2y^2=0 | | 0=p^2-36 | | 4p^2-68p+168=0 | | 4x(3x^3-2x+5)= | | 100x^2-64y^2= | | 4x(3x^3-2x-5)= | | 10y+y^2=0 | | X^2+2X=20 | | x^7+x^4-16x^3=16 | | z^2+4*z+1+i*4=0 |